Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79.226
Filter
1.
Rev Assoc Med Bras (1992) ; 70(4): e20231490, 2024.
Article in English | MEDLINE | ID: mdl-38716950

ABSTRACT

OBJECTIVE: Various studies have reported that certain long non-coding RNA levels are unusually low in the intestines of celiac disease patients, suggesting that this may be associated with the inflammation observed in celiac disease. Despite these studies, the research aimed at uncovering the potential role of long non-coding RNAs in the pathogenesis of autoimmune diseases like celiac disease remains insufficient. Therefore, in this study, we plan to assess long non-coding RNA polymorphisms associated with autoimmunity in children diagnosed with celiac disease according to the European Society for Paediatric Gastroenterology Hepatology and Nutrition criteria. METHODS: DNA was isolated from paraffin tissue samples of 88 pediatric celiac disease patients and 74 healthy pediatric individuals. Single-nucleotide polymorphism genotyping of five long non-coding RNA polymorphisms associated with autoimmunity (LINC01934-rs1018326, IL18RAP-rs917997, AP002954.4-rs10892258, UQCRC2P1-rs6441961, and HCG14 rs3135316) was conducted using the TaqMan single-nucleotide polymorphism genotyping assays with the LightCycler 480. RESULTS: In our study, the genotypic and allelic frequency distribution of LINC01934-rs1018326 and AP002954.4-rs10892258 polymorphisms was found to be statistically significant in the comparison between the two groups (p<0.05). According to the multiple genetic model analyses, the LINC01934-rs1018326 polymorphism was observed to confer a 1.14-fold risk in the recessive model and a 1.2-fold risk in the additive model for pediatric celiac disease. Similarly, the AP002954.4-rs10892258 polymorphism was found to pose a 1.40-fold risk in the dominant model and a 1.7-fold risk in the additive model. CONCLUSION: Our study results draw attention to the LINC01934-rs1018326 and AP002954.4-rs10892258 polymorphisms in celiac disease and suggest that these polymorphisms may be associated with inflammation in autoimmune diseases like celiac disease.


Subject(s)
Autoimmunity , Celiac Disease , Gene Frequency , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Humans , Celiac Disease/genetics , RNA, Long Noncoding/genetics , Case-Control Studies , Child , Polymorphism, Single Nucleotide/genetics , Female , Male , Genetic Predisposition to Disease/genetics , Autoimmunity/genetics , Child, Preschool , Adolescent
2.
Viral Immunol ; 37(4): 186-193, 2024 05.
Article in English | MEDLINE | ID: mdl-38717821

ABSTRACT

Coronavirus disease 2019 (COVID-19) represented an international health risk. Variants of the interferon-induced transmembrane protein-3 (IFITM3) gene can increase the risk of developing severe viral infections. This cross-sectional study investigated the association between IFITM3 rs12252A>G single nucleotide polymorphism (SNP) and COVID-19 severity and mortality in 100 Egyptian patients. All participants were subjected to serum interleukin-6 (IL-6) determination by ELISA and IFITM3 rs12252 genotyping by real-time polymerase chain reaction. Of all participants, 85.0% had the IFITM3 rs12252 homozygous AA genotype, whereas 15.0% had the heterozygous AG genotype. None of our participants had the homozygous GG genotype. The IFITM3 rs12252A allele was found in 92.5% and the G allele in only 7.5%. There was no significant association (p > 0.05) between the IFITM3 rs12252 SNP and COVID-19 severity, intensive care unit (ICU) admission, or IL-6 serum levels. The heterozygous AG genotype frequency showed a significant increase among participants who died (32.0%) compared with those who had been cured (9.3%). The mutant G allele was associated with patients' death. Its frequency among cured participants was 8.5%, whereas in those who died was 24.2% (p = 0.024) with 3.429 odds ratio [95% confidence interval: 1.1-10.4]. In conclusion, this study revealed a significant association between the G allele variant of IFITM3 rs12252 and COVID-19 mortality. However, results were unable to establish a significant link between rs12252 polymorphism, disease severity, ICU admission, or serum IL-6 levels.


Subject(s)
COVID-19 , Genotype , Interleukin-6 , Membrane Proteins , Polymorphism, Single Nucleotide , RNA-Binding Proteins , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/genetics , Female , Male , Egypt , Middle Aged , Membrane Proteins/genetics , Adult , Interleukin-6/blood , Interleukin-6/genetics , Cross-Sectional Studies , SARS-CoV-2/genetics , RNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Alleles , Severity of Illness Index , Gene Frequency , Aged
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731816

ABSTRACT

This study, conducted in the Republic of North Ossetia-Alania (RNOA), aimed to explore the genetic landscape of hyperphenylalaninemia (HPA) and phenylketonuria (PKU) in the Ossetian population using data from newborn screening (NBS). Through comprehensive molecular genetic analysis of 29 patients with HPA from diverse ethnic backgrounds, two major genetic variants in the PAH gene, P281L and P211T, were identified, constituting 50% of all detected pathogenic alleles in Ossetian patients. Remarkably, these variants exhibited an exceptionally high frequency in the Ossetian population, surpassing global prevalence rates. This study unveiled a notable prevalence of mild forms of HPA (78%), underscoring the importance of genetic counseling for carriers of pathogenic variants in the PAH gene. Moreover, the findings emphasized the necessity for ongoing monitoring of patients with mild forms, as they may lack significant symptoms for diagnosis, potentially impacting offspring. Overall, this research offers valuable insights into the genetic landscape of HPA and PKU in the Ossetian population.


Subject(s)
Phenylalanine Hydroxylase , Phenylketonurias , Humans , Phenylketonurias/genetics , Phenylketonurias/epidemiology , Female , Phenylalanine Hydroxylase/genetics , Male , Infant, Newborn , Neonatal Screening , Alleles , Gene Frequency
4.
Genome Biol Evol ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38742287

ABSTRACT

De novo evolved genes emerge from random parts of noncoding sequences and have, therefore, no homologs from which a function could be inferred. While expression analysis and knockout experiments can provide insights into the function, they do not directly test whether the gene is beneficial for its carrier. Here, we have used a seminatural environment experiment to test the fitness of the previously identified de novo evolved mouse gene Pldi, which has been implicated to have a role in sperm differentiation. We used a knockout mouse strain for this gene and competed it against its parental wildtype strain for several generations of free reproduction. We found that the knockout (ko) allele frequency decreased consistently across three replicates of the experiment. Using an approximate Bayesian computation framework that simulated the data under a demographic scenario mimicking the experiment's demography, we could estimate a selection coefficient ranging between 0.21 and 0.61 for the wildtype allele compared to the ko allele in males, under various models. This implies a relatively strong selective advantage, which would fix the new gene in less than hundred generations after its emergence.


Subject(s)
Genetic Fitness , Mice, Knockout , Animals , Mice , Male , Evolution, Molecular , Gene Frequency , Selection, Genetic , Bayes Theorem , Female , Models, Genetic , Alleles
5.
Biomed Res Int ; 2024: 3610879, 2024.
Article in English | MEDLINE | ID: mdl-38707766

ABSTRACT

Background: There is no conclusive evidence on the association between interleukin- (IL-) 6 gene polymorphism and type 2 diabetes mellitus (type 2 DM). Thus, this study is aimed at evaluating the role of rs1800795 and rs1800796 polymorphisms in the pathogenesis of type 2 DM among Ghanaians in the Ho Municipality. Materials and Methods: We recruited into this hospital-based case-control study 174 patients with type 2 DM (75 DM alone and 99 with DM+HTN) and 149 healthy individuals between 2018 and 2020. Demographic, lifestyle, clinical, anthropometric, and haemodynamic variables were obtained. Fasting blood samples were collected for haematological, biochemical, and molecular analyses. Genomic DNA was extracted, amplified using Tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS-PCR) technique, and genotyped for IL-6 gene polymorphism. Logistic regression analyses were performed to assess the association between IL-6 gene polymorphism and type 2 DM. Results: The minor allele frequency (MAF) of the rs1800795 and rs1800796 polymorphisms was higher in DM alone (57.5%, 62.0%) and DM with HTN groups (58.3%, 65.3%) than controls (33.1%, 20.0%). Carriers of the rs1800795GC genotype (aOR = 2.35, 95% CI: 1.13-4.90, p = 0.022) and mutant C allele (aOR = 2.41, 95% CI: 1.16-5.00, p = 0.019) as well as those who carried the rs1800796GC (aOR = 8.67, 95% CI: 4.00-18.90, p < 0.001) and mutant C allele (aOR = 8.84, 95% CI: 4.06-19.26, p = 0.001) had increased odds of type 2 DM. For both polymorphisms, carriers of the GC genotype had comparable levels of insulin, HOMA-IR, and fasting blood glucose (FBG) with those who carried the GG genotype. IL-6 levels were higher among carriers of the rs1800796GC variant compared to carriers of the rs1800796GG variant (p = 0.023). The rs1800796 polymorphism, dietary sugar intake, and exercise status, respectively, explained approximately 3% (p = 0.046), 3.2% (p = 0.038, coefficient = 1.456), and 6.2% (p = 0.004, coefficient = -2.754) of the variability in IL-6 levels, suggesting weak effect sizes. Conclusion: The GC genotype and mutant C allele are risk genetic variants associated with type 2 DM in the Ghanaian population. The rs1800796 GC variant, dietary sugar intake, and exercise status appear to contribute significantly to the variations in circulating IL-6 levels but with weak effect sizes.


Subject(s)
Diabetes Mellitus, Type 2 , Gene Frequency , Genetic Predisposition to Disease , Interleukin-6 , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 2/genetics , Female , Male , Interleukin-6/genetics , Middle Aged , Case-Control Studies , Ghana/epidemiology , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics , Gene Frequency/genetics , Adult , Aged , Genotype , Alleles
6.
Genet Sel Evol ; 56(1): 34, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698373

ABSTRACT

Metafounders are a useful concept to characterize relationships within and across populations, and to help genetic evaluations because they help modelling the means and variances of unknown base population animals. Current definitions of metafounder relationships are sensitive to the choice of reference alleles and have not been compared to their counterparts in population genetics-namely, heterozygosities, FST coefficients, and genetic distances. We redefine the relationships across populations with an arbitrary base of a maximum heterozygosity population in Hardy-Weinberg equilibrium. Then, the relationship between or within populations is a cross-product of the form Γ b , b ' = 2 n 2 p b - 1 2 p b ' - 1 ' with p being vectors of allele frequencies at n markers in populations b and b ' . This is simply the genomic relationship of two pseudo-individuals whose genotypes are equal to twice the allele frequencies. We also show that this coding is invariant to the choice of reference alleles. In addition, standard population genetics metrics (inbreeding coefficients of various forms; FST differentiation coefficients; segregation variance; and Nei's genetic distance) can be obtained from elements of matrix Γ .


Subject(s)
Gene Frequency , Genetics, Population , Models, Genetic , Animals , Genetics, Population/methods , Heterozygote , Alleles , Genomics/methods , Genotype , Genome
7.
Sci Rep ; 14(1): 10505, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714718

ABSTRACT

Metabolic syndrome (MetS) is closely related to cardiovascular and cerebrovascular diseases, and genetic predisposition is one of the main triggers for its development. To identify the susceptibility genes for MetS, we investigated the relationship between angiotensin-converting enzyme 2 (ACE2) single nucleotide polymorphisms (SNPs) and MetS in southern China. In total, 339 MetS patients and 398 non-MetS hospitalized patients were recruited. Four ACE2 polymorphisms (rs2074192, rs2106809, rs879922, and rs4646155) were genotyped using the polymerase chain reaction-ligase detection method and tested for their potential association with MetS and its related components. ACE2 rs2074192 and rs2106809 minor alleles conferred 2.485-fold and 3.313-fold greater risks of MetS in women. ACE2 rs2074192 and rs2106809 variants were risk factors for obesity, diabetes, and low-high-density lipoprotein cholesterolemia. However, in men, the ACE2 rs2074192 minor allele was associated with an approximately 0.525-fold reduction in MetS prevalence. Further comparing the components of MetS, ACE2 rs2074192 and rs2106809 variants reduced the risk of obesity and high triglyceride levels. In conclusion, ACE2 rs2074192 and rs2106809 SNPs were independently associated with MetS in a southern Chinese population and showed gender heterogeneity, which can be partially explained by obesity. Thus, these SNPs may be utilized as predictive biomarkers and molecular targets for MetS. A limitation of this study is that environmental and lifestyle differences, as well as genetic heterogeneity among different populations, were not considered in the analysis.


Subject(s)
Angiotensin-Converting Enzyme 2 , Genetic Predisposition to Disease , Metabolic Syndrome , Polymorphism, Single Nucleotide , Humans , Metabolic Syndrome/genetics , Metabolic Syndrome/epidemiology , Angiotensin-Converting Enzyme 2/genetics , Female , Male , Middle Aged , China/epidemiology , Case-Control Studies , Alleles , Aged , Adult , Risk Factors , Peptidyl-Dipeptidase A/genetics , Gene Frequency , Genotype
8.
HLA ; 103(5): e15515, 2024 May.
Article in English | MEDLINE | ID: mdl-38747019

ABSTRACT

Although a number of susceptibility loci for neuroblastoma (NB) have been identified by genome-wide association studies, it is still unclear whether variants in the HLA region contribute to NB susceptibility. In this study, we conducted a comprehensive genetic analysis of variants in the HLA region among 724 NB patients and 2863 matched controls from different cohorts. We exploited whole-exome sequencing data to accurately type HLA alleles with an ensemble approach on the results from three different typing tools, and carried out rigorous sample quality control to ensure a fine-scale ancestry matching. The frequencies of common HLA alleles were compared between cases and controls by logistic regression under additive and non-additive models. Population stratification was taken into account adjusting for ancestry-informative principal components. We detected significant HLA associations with NB. In particular, HLA-DQB1*05:02 (OR = 1.61; padj = 5.4 × 10-3) and HLA-DRB1*16:01 (OR = 1.60; padj = 2.3 × 10-2) alleles were associated to higher risk of developing NB. Conditional analysis highlighted the HLA-DQB1*05:02 allele and its residue Ser57 as key to this association. DQB1*05:02 allele was not associated to clinical features worse outcomes in the NB cohort. Nevertheless, a risk score derived from the allelic combinations of five HLA variants showed a substantial predictive value for patient survival (HR = 1.53; p = 0.032) that was independent from established NB prognostic factors. Our study leveraged powerful computational methods to explore WES data and HLA variants and to reveal complex genetic associations. Further studies are needed to validate the mechanisms of these interactions that contribute to the multifaceted pattern of factors underlying the disease initiation and progression.


Subject(s)
Alleles , Exome Sequencing , Genetic Predisposition to Disease , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/mortality , Exome Sequencing/methods , Case-Control Studies , Male , Female , Gene Frequency , HLA-DQ beta-Chains/genetics , HLA Antigens/genetics , Genome-Wide Association Study , HLA-DRB1 Chains/genetics , Polymorphism, Single Nucleotide
9.
Mol Biol Rep ; 51(1): 630, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720147

ABSTRACT

BACKGROUND: The pro-inflammatory cytokine IL-1 plays an important role in severe COVID-19. A change in IL-1 production may be associated with a mutation in the IL1Β gene. Our study analyzed the impact of the IL1Β gene variants (rs1143634) on disease progression in patients with severe COVID-19 pneumonia, taking into account treatment strategies. METHODS AND RESULTS: The study enrolled 117 patients with severe COVID-19 pneumonia. The IL1Β gene variants were identified using the polymerase chain reaction-restriction fragment length polymorphism method. In the group of patients, the following genotype frequencies were found based on the investigated rs1143634 variant of the IL1Β gene: CC-65.8%, CT-28.2%, and TT-6.0%. Our results showed that the group of patients with the T allele of the IL1Β gene had higher leukocyte counts (p = 0.040) and more pronounced lymphopenia (p = 0.007). It was determined that patients carrying the T allele stayed on ventilators significantly longer (p = 0.049) and required longer treatment with corticosteroids (p = 0.045). CONCLUSION: Identifying variants of the IL1Β gene can be used as a predictive tool for assessing the severity of COVID-19 pneumonia and tailoring personalized treatment strategies. Further research with a larger patient cohort is required to validate these findings.


Subject(s)
COVID-19 , Interleukin-1beta , SARS-CoV-2 , Humans , Interleukin-1beta/genetics , COVID-19/genetics , Male , Female , Middle Aged , Aged , SARS-CoV-2/genetics , Polymorphism, Single Nucleotide/genetics , Gene Frequency/genetics , Alleles , Genotype , Adult , Genetic Predisposition to Disease
10.
Sci Rep ; 14(1): 10170, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702336

ABSTRACT

The associations of vitamin D receptor (VDR)- single nucleotide polymorphisms (SNPs) with the symptoms of COVID-19 may vary between patients with different severities of COVID-19. Therefore, in the present study, we aim to compare VDR polymorphisms in severe and mild COVID-19 patients. In this study, a total number of 85 hospitalized patients and 91 mild/moderate patients with COVID-19 were recruited. SNPs in VDR genes were determined using ARMS and then confirmed by sanger sequencing. The mean (SD) age of participants in hospitalized and non-hospitalized group was 59.0 (12.4) and 47.8 (14.8) years, respectively. Almost 46% of participants in hospitalized and 48% of participant in non-hospitalized group were male. The frequency of TT genotype of SNP rs11568820 was significantly lower in hospitalized than non-hospitalized group (3.5% vs. 17.6%; P = 0.018). However, there was no significant differences between genotypes of SNPs rs7970314 and rs4334089 and also alleles frequencies in all SNPs of two groups. The genotype of rs11568820 SNP had an inverse association with hospitalization of patients with COVID-19 after adjustment for comorbidities [OR 0.18, 95% CI 0.04, 0.88; P = 0.034]. While, there was no relationship between genotypes of SNPs rs7970314 and rs4334089 and hospitalization. The TT genotype of rs11568820 plays protective role in sever COVID-19 and hospitalization. Further studies with a large sample size which consider various confounding factors are warranted to confirm our results.


Subject(s)
COVID-19 , Gene Frequency , Polymorphism, Single Nucleotide , Receptors, Calcitriol , Humans , Receptors, Calcitriol/genetics , Male , COVID-19/genetics , COVID-19/virology , Female , Middle Aged , Case-Control Studies , Aged , Adult , SARS-CoV-2/genetics , Severity of Illness Index , Genetic Predisposition to Disease , Genotype
11.
Mol Biol Rep ; 51(1): 612, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704770

ABSTRACT

BACKGROUND: The α-Major Regulatory Element (α-MRE), also known as HS-40, is located upstream of the α-globin gene cluster and has a crucial role in the long-range regulation of the α-globin gene expression. This enhancer is polymorphic and several haplotypes were identified in different populations, with haplotype D almost exclusively found in African populations. The purpose of this research was to identify the HS-40 haplotype associated with the 3.7 kb α-thalassemia deletion (-α3.7del) in the Portuguese population, and determine its ancestry and influence on patients' hematological phenotype. METHODS AND RESULTS: We selected 111 Portuguese individuals previously analyzed by Gap-PCR to detect the presence of the -α3.7del: 50 without the -α3.7del, 34 heterozygous and 27 homozygous for the -α3.7del. The HS-40 region was amplified by PCR followed by Sanger sequencing. Four HS-40 haplotypes were found (A to D). The distribution of HS-40 haplotypes and genotypes are significantly different between individuals with and without the -α3.7del, being haplotype D and genotype AD the most prevalent in patients with this deletion in homozygosity. Furthermore, multiple correspondence analysis revealed that individuals without the -α3.7del are grouped with other European populations, while samples with the -α3.7del are separated from these and found more closely related to the African population. CONCLUSION: This study revealed for the first time an association of the HS-40 haplotype D with the -α3.7del in the Portuguese population, and its likely African ancestry. These results may have clinical importance as in vitro analysis of haplotype D showed a decrease in its enhancer activity on α-globin gene.


Subject(s)
Haplotypes , Sequence Deletion , alpha-Globins , alpha-Thalassemia , Female , Humans , Male , alpha-Globins/genetics , alpha-Thalassemia/genetics , Black People/genetics , Gene Frequency/genetics , Genotype , Haplotypes/genetics , Portugal , Regulatory Sequences, Nucleic Acid/genetics , Sequence Deletion/genetics
12.
Mol Biol Rep ; 51(1): 614, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704785

ABSTRACT

BACKGROUND: Ankylosing spondylitis (AS) is often regarded as the prototypical manifestation of spondylo-arthropathies that prevalently involves the axial skeleton with the potential attribution of ERAP2 polymorphisms to AS predisposition. The purpose of this study was to determine the genetic association between ERAP2 gene rs2910686, and rs2248374 single nucleotide polymorphisms (SNPs) and the risk of ankylosing spondylitis in the Egyptian population. METHODS AND RESULTS: A cross-sectional work involved 200 individuals: 100 AS individuals diagnosed based on modified New York criteria in 1984 with 100 healthy controls matched in age and gender. The study included a comprehensive evaluation of historical data, clinical examinations, and evaluation of the activity of the disease using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). A comprehensive laboratory and radiological evaluation were conducted, accompanied by an assessment and genotyping of the ERAP2 gene variants rs2248374 and rs2910686. This genotyping was performed utilizing a real-time allelic discrimination methodology.Highly statistically substantial variations existed among the AS patients and the healthy control group regarding rs2910686 and rs2248374 alleles. There was a statistically significant difference between rs2910686 and rs2248374 regarding BASDAI, BASFI, mSASSS, ASQoL, V.A.S, E.S.R, and BASMI in the active AS group. CONCLUSIONS: ERAP2 gene SNPs have been identified as valuable diagnostic biomarkers for AS patients in the Egyptian population being a sensitive and non-invasive approach for AS diagnosis especially rs2910686. Highly statistically significant variations existed among the AS patients and the healthy control group regarding rs2910686 alleles and genotypes.Further research is recommended to explore the potential therapeutic implications of these SNPs.


Subject(s)
Aminopeptidases , Genetic Predisposition to Disease , North African People , Spondylitis, Ankylosing , Adult , Female , Humans , Male , Middle Aged , Alleles , Aminopeptidases/genetics , Case-Control Studies , Cross-Sectional Studies , Egypt/epidemiology , Gene Frequency/genetics , Genetic Association Studies/methods , Genotype , Polymorphism, Single Nucleotide , Spondylitis, Ankylosing/genetics
13.
Front Immunol ; 15: 1267624, 2024.
Article in English | MEDLINE | ID: mdl-38690286

ABSTRACT

Inflammatory cytokines have crucial roles in the pathogenesis of tuberculosis (TB), and interleukin (IL)-27 and IL-35 have a pro-inflammatory and anti-inflammatory effect on many diseases, including infectious diseases. Therefore, we evaluated the relationship between IL-27 and IL-35 gene polymorphism, expression levels, and pulmonary TB (PTB) susceptibility. Nine single-nucleotide polymorphisms (SNPs) in the IL-27 gene (rs181206, rs153109, and rs17855750) and the IL-35 gene (rs4740, rs428253, rs9807813, rs2243123, rs2243135, and rs568408) were genotyped by the SNPscan technique in 497 patients with PTB and 501 controls. There was no significant difference regarding the genotype and allele frequencies of the above SNPs in the IL-27 and IL-35 genes between patients with PTB and controls. Haplotype analysis showed that the frequency of the GAC haplotype in the IL-35 gene was significantly decreased in patients with PTB when compared to controls (p = 0.036). Stratified analysis suggested that the frequency of the IL-27 rs17855750 GG genotype was significantly increased in patients with PTB with fever. Moreover, the lower frequency of the IL-35 rs568408 GA genotype was associated with drug-induced liver injury in patients with PTB. The IL-35 rs428253 GC genotype, as well as the rs4740 AA genotype and A allele, showed significant relationships with hypoproteinemia in patients with PTB. When compared with controls, the IL-27 level was significantly increased in patients with PTB. Taken together, IL-35 gene variation might contribute to a protective role on the susceptibility to PTB, and IL-27 and IL-35 gene polymorphisms were associated with several clinical manifestations of patients with PTB.


Subject(s)
Gene Frequency , Genetic Predisposition to Disease , Interleukins , Polymorphism, Single Nucleotide , Tuberculosis, Pulmonary , Humans , Interleukins/genetics , Male , Female , Tuberculosis, Pulmonary/genetics , Adult , Middle Aged , Genotype , Haplotypes , Case-Control Studies , Alleles , Interleukin-27/genetics
14.
Front Cell Infect Microbiol ; 14: 1322882, 2024.
Article in English | MEDLINE | ID: mdl-38694517

ABSTRACT

COVID-19 has a broad clinical spectrum, ranging from asymptomatic-mild form to severe phenotype. The severity of COVID-19 is a complex trait influenced by various genetic and environmental factors. Ethnic differences have been observed in relation to COVID-19 severity during the pandemic. It is currently unknown whether genetic variations may contribute to the increased risk of severity observed in Latin-American individuals The aim of this study is to investigate the potential correlation between gene variants at CCL2, OAS1, and DPP9 genes and the severity of COVID-19 in a population from Quito, Ecuador. This observational case-control study was conducted at the Carrera de Biologia from the Universidad Central del Ecuador and the Hospital Quito Sur of the Instituto Ecuatoriano de Seguridad Social (Quito-SUR-IESS), Quito, Ecuador. Genotyping for gene variants at rs1024611 (A>G), rs10774671 (A>G), and rs10406145 (G>C) of CCL2, OAS1, and DPP9 genes was performed on 100 COVID-19 patients (43 with severe form and 57 asymptomatic-mild) using RFLP-PCR. The genotype distribution of all SNVs throughout the entire sample of 100 individuals showed Hardy Weinberg equilibrium (P=0.53, 0.35, and 0.4 for CCL2, OAS1, and DPP9, respectively). The HWE test did not find any statistically significant difference in genotype distribution between the study and control groups for any of the three SNVs. The multivariable logistic regression analysis showed that individuals with the GG of the CCL2 rs1024611 gene variant had an increased association with the severe COVID-19 phenotype in a recessive model (P = 0.0003, OR = 6.43, 95% CI 2.19-18.89) and for the OAS1 rs10774671 gene variant, the log-additive model showed a significant association with the severe phenotype of COVID-19 (P=0.0084, OR=3.85, 95% CI 1.33-11.12). Analysis of haplotype frequencies revealed that the coexistence of GAG at CCL2, OAS1, and DPP9 variants, respectively, in the same individual increased the presence of the severe COVID-19 phenotype (OR=2.273, 95% CI: 1.271-4.068, P=0.005305). The findings of the current study suggests that the ethnic background affects the allele and genotype frequencies of genes associated with the severity of COVID-19. The experience with COVID-19 has provided an opportunity to identify an ethnicity-based approach to recognize genetically high-risk individuals in different populations for emerging diseases.


Subject(s)
2',5'-Oligoadenylate Synthetase , COVID-19 , Chemokine CCL2 , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severity of Illness Index , Humans , Ecuador/epidemiology , Female , Male , Case-Control Studies , Adult , 2',5'-Oligoadenylate Synthetase/genetics , COVID-19/genetics , Middle Aged , Chemokine CCL2/genetics , SARS-CoV-2/genetics , Genetic Predisposition to Disease , Genotype , Gene Frequency , Aged , Young Adult
15.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732205

ABSTRACT

The tumor microenvironment is affected by reactive oxygen species and has been suggested to have an important role in ovarian cancer (OC) tumorigenesis. The role of glutathione transferases (GSTs) in the maintenance of redox balance is considered as an important contributing factor in cancer, including OC. Furthermore, GSTs are mostly encoded by highly polymorphic genes, which further highlights their potential role in OC, known to originate from accumulated genetic changes. Since the potential relevance of genetic variations in omega-class GSTs (GSTO1 and GSTO2), with somewhat different activities such as thioltransferase and dehydroascorbate reductase activity, has not been clarified as yet in terms of susceptibility to OC, we aimed to investigate whether the presence of different GSTO1 and GSTO2 genetic variants, individually or combined, might represent determinants of risk for OC development. Genotyping was performed in 110 OC patients and 129 matched controls using a PCR-based assay for genotyping single nucleotide polymorphisms. The results of our study show that homozygous carriers of the GSTO2 variant G allele are at an increased risk of OC development in comparison to the carriers of the referent genotype (OR1 = 2.16, 95% CI: 0.88-5.26, p = 0.08; OR2 = 2.49, 95% CI: 0.93-6.61, p = 0.06). Furthermore, individuals with GST omega haplotype H2, meaning the concomitant presence of the GSTO1*A and GSTO2*G alleles, are more susceptible to OC development, while carriers of the H4 (*A*A) haplotype exhibited lower risk of OC when crude and adjusted haplotype analysis was performed (OR1 = 0.29; 95% CI: 0.12-0.70; p = 0.007 and OR2 = 0.27; 95% CI: 0.11-0.67; p = 0.0054). Overall, our results suggest that GSTO locus variants may confer OC risk.


Subject(s)
Alleles , Genetic Predisposition to Disease , Glutathione Transferase , Ovarian Neoplasms , Polymorphism, Single Nucleotide , Humans , Female , Ovarian Neoplasms/genetics , Glutathione Transferase/genetics , Middle Aged , Genotype , Adult , Aged , Case-Control Studies , Gene Frequency
16.
Ann Hematol ; 103(6): 1897-1907, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38616191

ABSTRACT

Glycosylphosphatidylinositol-anchored protein-deficient hematopoietic stem and progenitor cell development caused by PIGA mutations cannot fully explain the pathogenesis of paroxysmal nocturnal hemoglobinuria (PNH). Herein, patients newly diagnosed with PNH at our hospital between April 2019 and April 2021 were recruited. The human leukocyte antigen (HLA) class I and II loci were analyzed, and patients were stratified by PNH clone sizes: small (< 50%) and large (≥ 50%). In 40 patients (29 males; 72.5%), the median PNH clone size was 72%. Thirteen (32.5%) and twenty-seven (67.5%) patients harbored small and large PNH clones, respectively. DRB1*15:01 and DQB1*06:02 had higher frequencies in patients with PNH than in healthy controls (adjusted P-value = 4.10 × 10-4 and 4.10 × 10-4, respectively). Whole HLA class I and II allele contributions differed (P = 0.046 and 0.065, not significant difference) when comparing patients with small and large PNH clones. B*13:01 and C*04:01 allelic frequencies were significantly higher in patients with small clones (P = 0.032 and P = 0.032, respectively). Patients with small clones had higher class II HLA evolutionary divergence (HED) (P = 0.041) and global class I and II HED (P = 0.019). In the entire cohort, 17 HLA aberrations were found in 11 (27.5%) patients. No significant differences in HLA aberrations were found between patients with small or large clones. In conclusion, patients with small clones tended to have a higher frequency of immune attack-associated alleles. A higher HED in patients with small clones may reflect a propensity for T cell-mediated autoimmunity. HLA aberrations were similar between patients with small and large clones.


Subject(s)
Hemoglobinuria, Paroxysmal , Humans , Hemoglobinuria, Paroxysmal/genetics , Hemoglobinuria, Paroxysmal/immunology , Male , Female , Middle Aged , Adult , Aged , Gene Frequency , HLA Antigens/genetics , Young Adult , Adolescent , Clone Cells
17.
Transfusion ; 64(5): 920-928, 2024 May.
Article in English | MEDLINE | ID: mdl-38634174

ABSTRACT

BACKGROUND: For patients with weak or discrepant RhD RBC phenotypes, RHD genotyping is employed to determine need for RhD-negative management. However, many RHD variants are type D-negative or D-positive. Serological recognition rates (RRs) of weak and partial RHD variants are poorly characterized. STUDY DESIGN AND METHODS: Four US studies employing RHD genotyping for weak or discrepant RhD phenotypes provided data for race/ethnicity-specific serological recognition. Three studies used microplate, and 1 used gel and tube; 2 had anti-D data. We obtained White and Hispanic/Latino allele frequencies (AFs) of weak D types 1, 2, and 3 single-nucleotide variants (SNVs) from the Genome Aggregation Database (gnomAD, v4.0.0) and devised Hardy-Weinberg-based formulas to correct for gnomAD's overcount of hemizygous RHD SNVs as homozygous. We compiled common partial RHD AF from genotyped cohorts of US Black or sickle cell disease subjects. From variant AF, we calculated hemizygous-plus-homozygous genetic prevalences. Serological prevalence: genetic prevalence ratios yielded serological RRs. RESULTS: Overall RRs of weak D types 1-3 were 17% (95% confidence interval 12%-24%) in Whites and 12% (5%-27%) in Hispanics/Latinos. For eight partial RHD variants in Blacks, overall RR was 11% (8%-14%). However, DAR RR was 80% (38%-156%). Compared to microplate, gel-tube recognition was higher for type 2 and DAU5 and lower for type 4.0. Anti-D was present in 6% of recognized partial RHD cases, but only in 0.7% of estimated total genetic cases. DISCUSSION: Based on AF, >80% of patients with weak or partial RHD variants were unrecognized serologically. Although overall anti-D rates were low, better detection of partial RHD variants is desirable.


Subject(s)
Gene Frequency , Rh-Hr Blood-Group System , Female , Humans , Male , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/blood , Genotype , Hispanic or Latino/genetics , Phenotype , Polymorphism, Single Nucleotide , Rh-Hr Blood-Group System/genetics , White/genetics , Black or African American/genetics
18.
PLoS One ; 19(4): e0300071, 2024.
Article in English | MEDLINE | ID: mdl-38683826

ABSTRACT

BACKGROUND: The liking for sweet taste is a powerful driver for consuming added sugars, and therefore, understanding how sweet liking is formed is a critical step in devising strategies to lower added sugars consumption. However, current research on the influence of genetic and environmental factors on sweet liking is mostly based on research conducted with individuals of European ancestry. Whether these results can be generalized to people of other ancestry groups warrants investigation. METHODS: We will determine the differences in allele frequencies in sweet-related genetic variants and their effects on sweet liking in 426 adults of either African or East Asian ancestry, who have the highest and lowest average added sugars intake, respectively, among ancestry groups in the U.S. We will collect information on participants' sweet-liking phenotype, added sugars intake (sweetness exposure), anthropometric measures, place-of-birth, and for immigrants, duration of time living in the U.S. and age when immigrated. Ancestry-specific polygenic scores of sweet liking will be computed based on the effect sizes of the sweet-related genetic variants on the sweet-liking phenotype for each ancestry group. The predictive validity of the polygenic scores will be tested using individuals of African and East Asian ancestry from the UK Biobank. We will also compare sweet liking between U.S.-born individuals and immigrants within each ancestry group to test whether differences in environmental sweetness exposure during childhood affect sweet liking in adulthood. DISCUSSION: Expanding genetic research on taste to individuals from ancestry groups traditionally underrepresented in such research is consistent with equity goals in sensory and nutrition science. Findings from this study will help in the development of a more personalized nutrition approach for diverse populations. TRIAL REGISTRATION: This protocol has been preregistered with the Center for Open Science (https://doi.org/10.17605/OSF.IO/WPR9E).


Subject(s)
Asian , Black or African American , Food Preferences , Taste , Adult , Female , Humans , Male , Middle Aged , Young Adult , Gene Frequency , Polymorphism, Single Nucleotide , Taste/genetics , Taste/physiology , United States , Asian/genetics , Black or African American/genetics , Research Design
19.
Immunogenetics ; 76(3): 175-187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38607388

ABSTRACT

One of the probable hypotheses for the onset of autoimmunity is molecular mimicry. This study aimed to determine the HLA-II risk alleles for developing Hashimoto's thyroiditis (HT) in order to analyze the molecular homology between candidate pathogen-derived epitopes and potentially self-antigens (thyroid peroxidase, TPO) based on the presence of HLA risk alleles. HLA-DRB1/-DQB1 genotyping was performed in 100 HT patients and 330 ethnically matched healthy controls to determine the predisposing/protective alleles for HT disease. Then, in silico analysis was conducted to examine the sequence homology between epitopes derived from autoantigens and four potentially relevant pathogens and their binding capacities to HLA risk alleles based on peptide docking analysis. We identified HLA-DRB1*03:01, *04:02, *04:05, and *11:04 as predisposing alleles and DRB1*13:01 as a potentially predictive allele for HT disease. Also, DRB1*11:04 ~ DQB1*03:01 (Pc = 0.002; OR, 3.97) and DRB1*03:01 ~ DQB1*02:01 (Pc = 0.004; OR, 2.24) haplotypes conferred a predisposing role for HT. Based on logistic regression analysis, carrying risk alleles increased the risk of HT development 4.5 times in our population (P = 7.09E-10). Also, ROC curve analysis revealed a high predictive power of those risk alleles for discrimination of the susceptible from healthy individuals (AUC, 0.70; P = 6.6E-10). Analysis of peptide sequence homology between epitopes of TPO and epitopes derived from four candidate microorganisms revealed a homology between envelop glycoprotein D of herpes virus and sequence 151-199 of TPO with remarkable binding capacity to HLA-DRB1*03:01 allele. Our findings indicate the increased risk of developing HT in those individuals carrying HLA risk alleles which can also be related to herpes virus infection.


Subject(s)
Alleles , Autoantigens , Epitopes , Genetic Predisposition to Disease , HLA-DQ beta-Chains , HLA-DRB1 Chains , Hashimoto Disease , Humans , Male , Female , Hashimoto Disease/genetics , Hashimoto Disease/immunology , Adult , Iran , HLA-DRB1 Chains/genetics , HLA-DQ beta-Chains/genetics , Autoantigens/immunology , Autoantigens/genetics , Epitopes/immunology , Epitopes/genetics , Middle Aged , Case-Control Studies , Iodide Peroxidase/genetics , Iodide Peroxidase/immunology , Haplotypes , Genotype , Gene Frequency
20.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 1-6, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650162

ABSTRACT

Endothelial dysfunction is the main factor that causes the onset of CAD. Leukocyte adhesion to the endothelium of the active blood artery wall has been demonstrated to be one of the early indicators of arteriosclerosis. This process is regulated by selectins. The purpose of this study is to ascertain the relationship between the polymorphisms in the E-selectin gene that have been linked to ischemic heart disease. We looked at the functional impact of the E-selectin gene polymorphism 7170G>C in Iraqi patients with IHD. This study was conducted on 200 participants who were admitted to the surgical specialty hospital-cardiac center in Erbil City, Iraq between October 2021 and May 2022. Based on the outcomes of the clinical examination, laboratory tests, coronary angiography (COA), acute myocardial infarction (MI) type ST-elevation myocardial infarction (STEMI), stable angina pectoris (SAP), and healthy control groups were tested. Each sample was subjected to Sanger sequencing. The polymorphism was significantly linked to stable angina and myocardial infarction Genotype CC was higher in SAP when compared with MI and control groups which was statistically significant with (p-value<0.05). A higher proportion of C allele was observed in SAP patients (15.7%) which was significantly higher than MI (14.58%) and control (10.8%). The statistical chi-square analysis for allele G frequency showed insignificant differences (p-value>0.05) between patients and the control group. Genetic variation in E-selectin such as polymorphism in nucleotide 7170 G>C at exon 4 region can significantly affect the outcome of cardiovascular diseases.


Subject(s)
Angina, Stable , E-Selectin , Genetic Predisposition to Disease , Myocardial Infarction , Polymorphism, Single Nucleotide , Humans , Middle Aged , Alleles , Angina, Stable/genetics , Case-Control Studies , E-Selectin/genetics , Gene Frequency/genetics , Genotype , Iraq , Myocardial Infarction/genetics , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...